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In this paper we discuss the initial evolution of wind-generated, gravity-capillary 
waves by means of a dynamical model that includes the effects of wind input, viscous 
dissipation and three-wave interactions. In particular, we study the generation of the 
initial wavelets by wind and the subsequent migration of the peak of the spectrum 
to lower wavenumbers. Under certain conditions a sudden migration of the peak 
wavenumber is found. It is argued that this sudden migration is related to the 
phenomenon of second-harmonic resonance. We also observe that during the 
generation of the initial wavelets by wind, nonlinear three-wave interactions may be 
important. Therefore, the experimental determination of the growth rate of the 
waves by wind by just analysing the time series of the surface elevation (as is done 
by e.g. Kawai 1979 and Plant & Wright 1977) might be in error. 

1. Introduction 
In this paper we shall discuss the evolution of wind-generated, gravity-capillary 

waves, with emphasis on the effect of three-wave interactions. Choi (1977) 
investigated experimentally the evolution of gravity-capillary waves in the presence 
of wind. The fetch dependence of the wave variance spectrum was determined and 
he observed at  a certain fetch a rather sudden transition of the peak frequency of the 
spectrum to half its initial value. This period doubling may also be observed in the 
spectra obtained by Kawai (1979). Kawai distingusihed between two stages of 
growth, one where only linear effects due to growth of the wind were thought to be 
present (the stage of the initial wavelets) and a stage where nonlinear effects become 
important. Plant & Wright (1977) studied the energy balance of gravity-capillary 
waves and concluded that resonant three-wave interactions play an important role 
in the evolution of these waves, while the effect of resonant four-wave interactions 
is only minor. They did not observe period doubling, presumably because their 
interest was in later stages of growth. 

Chen & Saffman (1979) suggested that the observed period doubling is related to 
the phenomenon of second-harmonic resonance. Second-harmonic resonance occurs 
if the frequency of the free wave at wavenumber 2k (a free wave is a wave that obeys 
a dispersion relation w = w ( k ) )  is twice the frequency of the free wave at wavenumber 
k, i.e. 

w(2k)  = 2w(k) .  (1) 

w = (gk + Tk3) i ,  

For pure gravity-capillary waves with dispersion relation 

( 2 )  
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where g is the acceleration due to gravity and T is surface tension, the condition (1) 
for second-harmonic resonance is satisfied for the wavenumber k,, 

Whenever this conditions is met there is a strong nonlinear interaction between the 
free wave a t  wavenumber k and its second harmonic. Simmons (1969) conjectured 
that when gravity-capillary waves are generated near the second harmonic by wind 
the effect of second-harmonic resonance is to transfer energy from the second 
harmonic to the first harmonic. 

Janssen (1986) obtained a simple dynamical model for the strong, nonlinear 
interaction between the first and second harmonic that includes the effects of wind 
input, viscous dissipation and shear in the water current. Period doubling was found 
to  occur rather suddenly as growth by wind combined with nonlinear interaction 
gave a bi-exponential growth of the waves a t  half the initial peak frequency. 

Here, we present some (numerical) results of a more general model of the evolution 
of wind-induced, gravity-capillary waves. Our starting point is a gravity-capillary 
wave field in isolation. As was shown by Zakharov (1968), such a wave field 
constitutes a Hamiltonian system and the dynamics of the waves are determined by 
Hamilton’s equations. Zakharov expressed the Hamiltonian in a power series of 
essentially the wave amplitude. Retaining terms up to third order in wave 
amplitude, one finds that the rate of change of the wave amplitude in time is 
determined by three-wave interactions only. According to estimates of Plant & 
Wright (1977), for gravity-capillary waves the effect of higher-order nonlinearity is 
quite small. We perturb this Hamiltonian system by including the effects of wind 
input and viscous dissipation, assuming that nonlinearity and the latter effects are 
small but equally important. 

The objective is to  study the initial-value problem that at time t = 0 starts with 
a white-noise spectrum. The wind is then switched on and our interest is in the 
evolution in time of the wavenumber spectrum and related quantities. Please note 
that one therefore hopes to expect wavelength doubling instead of the period 
doubling in experiment. The resulting set of ordinary differential equations is solved 
by means of a Runge-Kutta 4 integration method. This method appears to be very 
accurate as is illustrated by the case of a wave field in isolation (hence, no wind input 
or viscous dissipation) where energy and momentum are conserved up to 7 significant 
digits for periods of about 50-100 typical wave periods. 

First, in order to check on errors, the numerical code was applied to a case that 
may be treated analytically, namely the special case that only the waves obeying the 
condition for second-harmonic resonance are present (cf. (1)). The numerical results 
are in excellent agreement with analytical results as obtained by Janssen (1986), e.g. 
wind input gives rise to a very sudden transfer of energy from the second harmonic 
to the first harmonic (wavelength doubling). 

Then, we use the numerical code for a one-dimensional simulation of the 
generation of a spectrum of gravity-capillary waves by wind. We have chosen the 
number of modes and the mesh width in wavenumber space in such a way that the 
highest wavenumber is well inside the viscous subrange. I n  practice this means that 
we take a spectrum of waves with 25-50 components. We have performed a 
systematic study of the dependence of the evolution of gravity-capillary waves on 
the initial noise level (at  constant wind speed). In  all the cases nonlinear effects due 
to three-wave interactions affect the evolution of the wave spectrum, although for 
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small initial noise levels this happens at  later stages of wave growth. Nonlinearity 
gives rise to a down-shift in the peak wavenumber by a factor of two. We have also 
studied the dependence on wind speed at a constant noise level. In  particular, we 
consider three special cases. The first one has its maximum input of energy just below 
the wavenumber k, (cf. (3)) for second-harmonic resonance, whereas the second case 
has the maximum input of energy at the wavenumber k,. The last case, which most 
resembles Choi’s experiment, has its maximum energy input at  a wavenumber 
slightly above k,. Interestingly, during the stage of the initial wavelets (using 
Kawai’s terminology) a narrow spectral peak is generated, much narrower than one 
would expect from the linear theory of wind-wave generation alone. It is shown that 
three-wave interactions give rise to an enhanced growth of the spectral peak. After 
the stage of the initial wavelets a very sudden downshift of the peak wavenumber is 
observed. All this is in qualitative agreement with Choi’s experiment. 

We have chosen a deterministic instead of a statistical approach because apart 
from the consideration that a statistical theory of an ensemble of wave systems 
might not give an appropriate description of a laboratory experiment, the 
conventional statistical theory of three-wave interactions fails in case of second- 
harmonic resonance (Davidson 1972 ; Valenzuela & Laing 1972). This immediately 
follows from the evolution equation for the action density n, which reads (Davidson 
1972) 

a 
s -n, = 4x dk,dk,S(k,+k3-k,)S(o,+w,-w,)lV(-l,2,3)12 

(‘1 n2 n3- s2  n1 n 3 - s 3  n1 n2>> (4) 
at I-: 

where n, = n(k,) ,  etc, s1 = sign (k , ) ,  V (  - 1,2,3) is the interaction coefficient as given 
by Zakharov, and w1 = s1 o(k,) with w given by (2). When performing the 
integrations over k, and k,, the delta function over the frequencies give rise to a 
Jacobian J and the rate of change of n, is proportional to 

d d -’ 
(dk, dk, ’ 1  ’ 

J =  -@ --w 

where k, and k, are expressed as functions of k, by solving the resonance 
conditions 

In the special case of second harmonic resonance k, = k, = ik, (where for gravity- 
capillary waves k, is given by (3)) and the Jacobian becomes infinite, because the 
group velocities of mode 2 and mode 3 become equal. This means that according to 
the evolution equation (4) there would be an instant relaxation to a spectrum that 
obeys the condition that the terms in curly brackets in (4) for the resonant modes in 
question vanish, or 

Although this might be an appropriate condition if one is interested in long 
timescales it is certainly not valid for the initial evolution of gravity-capillary waves 
in a wind-wave tank, where at the start waves are being generated around k = k,. We 
conclude from this that second-harmonic resonance must play an important role 
in the evolution of the surface waves. Needless to say in the remainder of this paper 
we are especially interested in the energy transfer near the second-harmonic 
wavenumber as obtained from the deterministic equations. 

o1 = w,+o,, k,  = k,+k, .  

n(k,) = +n(ik,). (6) 
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2. Evolution equation for gravityxapillary waves 
Our starting point is the Hamiltonian for surface waves introduced by Zakharov 

(1968) (see also Broer 1974; Miles 1977). The total energy of the fluid is (apart from 
the constant water density p,) 

E = I 2 Sdr 1, [ (Vq5)2 + ($ q5!] dz + & PI 7' + T PI [l + ( V T ) ~ ) ~  - 13. (7) 

Here, 7 is the surface elevation, q5 the velocity potential, g the acceleration due to 
gravity, T the surface tension and V the horizontal gradient. 

Choosing as canonical variables the surface elevation 7 and the velocity potential 
at the surface $ = @(z, I, .t)lz-q, Hamilton's equations 

have been shown to be equivalent to the kinematic and pressure condition at  the 
surface. Zakharov proceeded by introducing the Fourier transforms of 7 and $, 

n(k)  = - drl;l(r) e-ik.r, $(k) = (9) 27T ' 5  27T 

thus solving the boundary-value problem for the potential q5, 
Aq5 = 0 in the region (21- CQ c z < v}, (10) 

in an iterative manner. Finally, Zakharov introduced the complex variables a(k) and 
ia*(k) according to 

1 ki 
q(k) = - ,A(k) ,  d 2  ws 

A ( k )  = a ( k ) + a * ( - k ) ,  

i wt 

4 2  ki 
$(k) = - - -B(k) ,  B(k )  = a(k ) -a* ( -k )  

(where w = (gk+Tk3)i and k = lkl) in order to be able to express the energy in the 
form of a series in powers of a(k) and a*(k). Hamilton's equations (8) then become 

a 6E 
the single equation 

--a(k) = -i- 
at 6a*(k)' 

Some simplifcations of the resulting evolution equation may be obtained by the 
restriction that the waves are only propagating to the right as we are interested in 
wind-generated surface waves. Also, from now on we shall only consider one- 
dimensional propagation. To second order in wave amplitude, the evolution equation 
for the complex amplitude A (cf. (11)) then becomes 

(12)  

a 
-A ,  = -is,w,A,-is, dk2dk3S(k2+k3-k,) V(- l ,2 ,3 )A2A3,  (13) 
at 

where A, = A ( k l ) ,  s1 = sign (kJ, 6 is the Dirac delta function and the interaction 
matrix V is given by (Zakharov 1968; Crawford et al. 1981) 

+ (k2 -k3  + k2 k3)  { w2w3 A):]. (14) 
@1 k 2 k 3  
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An alternative form of the evolution equation for A may be obtained by using the 
property A*( - k) = A(k), which follows from the reality of the surface elevation. 
Using this property and some symmetry properties of V, an equation for A,, 
k, > 0, with positive wavenumber arguments only, may be obtained. The result is 

a 
-A - iw,A, -i dk,dk,{S(k1-k,-k,)V(-l,2,3)A,A, 
at l - -  

+2S(kl-k,+k3) V(-1,2, -3)A,A$}. (15) 

Equation (15) admits a numbers of conserved quantities. The first is the Hamiltonian 
H, which is however not the total energy of the fluid as (15) is an approximation of 
(12). The Hamiltonian is given by 

H = Jr dk, WllA,I2 + 1; dk, dk, dk, S(k, +k , -k , )  V (  - 1,2,3) {A:A,A, + A, A,* A;}, 

(16) 
and the evolution equation (15) follows from Hamilton’s equation 

considering A, and iA: as independent canonical variables. It is emphasized that for 
the deterministic equations the ‘energy ’ is given by the complicated expression for 
H;  it involves cubic terms in the wave amplitude. 

Another conserved quantity is wave momentum. It is defined by 

and P is conserved, as may be checked by calculating @/dt while using the 
symmetry properties of V .  

So far we have considered conservative wave-wave interactions. The effects of 
wind input and viscous dissipation can however simply be included in the case where 
these physical processes are as important as the three-wave interactions. The final 
result then is 

:A1 = (-iw, s,+ yl)A,-is, J dk,dk,S(k,+k,-k,) V (  - 1,2,3) A, A,, (18) 
at -m 

where y1 = y(k,) represents both the effect of viscous dissipation and wind input. For 
y ,  we take an expression proposed by Plant & Wright (1977), 

y ( k )  = k2 r2-2uw), 
where v, is the kinematic viscosity of water, u* is the friction velocity of the air flow 
and 6 x 0.1/2x. The first term represents the effect of wind input and the second term 
represents viscous dissipation. The growth rate y as a function of wavenumber k is 
plotted in figure 1 for u* = 17 cm/s and 21 cm/s. Clearly, the growth rate is a very 
sensitive function of u*. This follows, for example, from the condition of zero growth 
rate, i.e. w = 6u:/2vW). Since for these high frequencies the effect of gravity may be 
neglected, one fmds that the growth rate becomes zero for the wavenumber 
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t 

FIQURE 1. The growth rate y for gravity-capillary waves as a function of wavenumber for a friction 
velocity of 17 and 21 cm/s. Here, 13 = 0.1/2x, Y, = 0.0114, g = 981, T = 74. 

Following a similar reasoning one h d s  that the maximum of the growth rate scales 
like ymax - ufH3. The modelling of all wind-induced and viscous effects by (19) is fairly 
crude. This model is however partly supported by observations and roughly in 
accord with numerical work of Kawai (1979) and theoretical estimates of Gastel, 
Janssen & Komen (1985). It is probably reasonably accurate for fairly short waves 
of small slope but certainly not for long waves that travel faster than the wind speed 
at 10 m, as (19) does not give a long-wave cutoff for instability. 

3. Numerical treatment of wave-wave interactions 

dimensionless variables according to 
Before the numerical method to  solve (18) is briefly discussed, we introduce 

Then, the growth rate y transforms to 

J 

where 
u; = u*/(gT)i, u& = lJ,gi/fi 

and 0’ = (k’ + IC‘3)t ,  (22) 

and the evolution equation becomes, dropping the primes from now on, 

a 
--A, = (-io,s,+y,)A,-is, dk2dk,6(k,+k3-kl) V ( - l ,  2,3)A2A3. (23) 
at 
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This equation will be solved for a finite number of modes. To that end the wave 
amplitude is represented as a finite series of Dirac delta functions, 

A, = C ajd(k1--Aj), 

where A is the spacing in wavenumber space. The evolution equation for a, 
becomes 

(24) 
a % a j =  (-is,w,+y,)a,-is, C V(- j , l , j -Z )a la j - l ,  j = - N , N .  

This set of 2N + 1 ordinary differential equations was solved by means of a standard 
integration method (a Runge-Kutta 4 method). The discrete counterparts of the 

N 

I--N 

N 

1--N 

conserved quantities P and H are ~ 

N 

P = C jbjI2, 
1-0 ] (25) 
N N j  

3-0 j-0 1-0 
H = C wjla,12 + C C V (  -j, 2,j-1) {a? a, a,-l + c.c.}. 

An appropriate measure for the spectral energy density would perhaps be the 
Hamiltonian density 

as in the case of no dissipation and growth by wind H = Z H , A  is conserved. In  an 
experiment, however, it is customary to measure the surface-elevation spectrum. The 
relation between the Fourier transform of the surface elevation, ~ ( k )  and the 
amplitude A is given by 

1 ki . 

In a discrete representation, 7 = X q , d ( k - A j ) ,  one therefore finds 

where ( r 2 )  is the spatial average of the variance r2, 

The surface-elevation spectrum F7 is then defined as 

<=2----  Ir l 2  - k la l2 j = O , N ,  (2n)2A w (27~)~A’ 

and the relation between dimensional and dimensionless quantities is 

T 

g 
( q 2 )  = - < f 2 ) ,  F7 = Fi, 

Before we discuss in detail the evolution of the surface-elevation spectrum under 
generating conditions we consider some special examples. In order to check the 
numerical code we choose N = 2, A = l / d 2  as this corresponds to the case of second- 
harmonic resonance, which may be solved exactly. 
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From (24) one has for N = 2 

a 
at 
-a, = (-iw,+y,)a,-2iVa~a2 

a 
%a2= (-iw2+y2)a2-iVa:, 

where 
A! 

V = V ( - 1 ,  -1,2) = -(&,)%, 4n 

using the conditions for second-harmonic resonance, i.e. w2 = 2w, and k, = 2k,. 

conserved quantities. These immediately follow from (25) for N = 2, i.e. 
For y = 0, (30) may be solved exactly in terms of elliptic functions as it has two 

2 

p = c jbjI2, 
1-0 

H = W ,  P+ V (  - 1, - 1,2) {a: U; + c.c.}. 

Please note that as P and H are conserved, the conservation of L = a:at + C.C. follows 
a t  once. The latter conserved quantity is the one usually encountered in connection 
with second-harmonic resonance (McGoldrick 1972). The results of the numerical 
computation for the initial conditions a,(O) = 0.1, a2(0) = 1 are given in figure 1.  I n  
agreement with the analysis, periodic solutions are found with a maximum in the 
amplitude a, of 1.4175, whereas analytically one finds 1.4142. Wave momentum and 
energy are conserved to  6 significant digits. 

I n  a second experiment we took a constant growth rate y = y1 = y2. This case may 
also be solved exactly as the transformations 

a, = 6, eyt, a2 = 6, eyt 

and the introduction of a new timescale 7, 

eyt - 1 

Y 
,T=- 

just give the conservative equations for 6,(7), a2(7). Clearly, when y is positive the 
interplay between the first and second harmonic occurs on a shorter timescale. We 
have illustrated this for the same initial conditions as the conservative case, with a 
growth rate y = 0.016 (figure 3). 

Janssen (1986) showed, using linear stability analysis, that this sudden transfer of 
energy from the second to first harmonic is also found for y1 ?= y,. He also studied the 
case that the resonance between the two modes is not perfect (because of a slight 
wavenumber mismatch, for example) and found no energy transfer from the second 
to first harmonic unless the wave amplitude of the second harmonic exceeded a 
certain value that depends on the wavenumber mismatch (see also Chen & Saffman 
1979). If h is the wave height of the wave a t  wavenumber k the threshold condition 

is given by Ll 

and this condition holds true for k2 !z 2 and in the absence of wind. 
The picture that emerges from these simple examples in clear. If the growth rate 

due to wind has a maximum around the second-harmonic wavenumber k, = d 2  then 
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resonance: 

2 

FIQURE 2. Absolute value of the amplitudes of the first and second harmonic, a, and a2, 
respectively, aa a function of time (no wind input). 

Second-harmonic resonance : 
wind input 

I 

FIGURE 3. Absolute value of the amplitudes of the first and second harmonic, a, and a2, 
respectively, aa a function bf time. Second-harmonic resonance with wind input. Note that the 
energy transfer occurs on a shorter timescale compared with figure 2. 

the second harmonic will be generated first. This continues to  happen until the wave 
height exceeds the threshold (31), then, depending on the position of the maximum 
of the wind input there will be a gradual or a sudden shift of the peak of the spectrum. 
If this maximum is close to  k,, condition (31) will be satisfied quite soon giving a 
rather gradual shift. If, however, the maximum is far from k, it takes a long time 
before the transfer condition (31) is satisfied. But, when (31) is satisfied, the 
amplitudes of the first and second harmonic have become considerable so that now 
a sudden transfer of energy from the second to  first harmonic occurs. The question 
is, however, what will happen if many waves are allowed to evolve because the 
dispersion relation of the gravity-capillary admits other three-wave interactions as 
well? We will discuss this problem in $4. 
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FIQURE 4. Evolution of frequency spectrum as a function of fetch (from Choi 1977). 

4. Numerical simulation of wind-wave tank experiments 
In this Section some numerical simulations of wind-generated surface waves in a 

wind-wave tank are described. We concentrate on Choi's (1977) experiment and 
briefly comment on the experiments of Kawai (1979). Choi investigated the 
generation of gravity-capillary waves by wind in the $mde wind tunnel described 
by Favre' & Coantic (1974). For a brief account of these results see also 
Ramamonjiarisoa, Baldy & Choi (1978). 

For a wind speed of 5 m/s this experiment clearly revealed the period-doubling 
phenomenon, discussed in some detail by Janssen (1986). This is illustrated in figure 
4 where the frequency spectrum for the surface elevation is given for different fetch. 
Another remarkable feature of figure 4 is that the spectrum at a fetch of 70 cm is 
narrower than is to be expected from the linear theory of wind-wave generation 
alone. The reason is that the maximum in the growth curve (see figure 1) is too broad. 
Assuming that the linear theory of wind-wave generation is correct this means that 
nonlinear effects must be responsible for the narrowing of the peak. We shall discuss 
this further when describing the numerical-simulation results. 

We have solved the evolution equation (24) for a, for 50 modes. The constants for 
wind input and dissipation were chosen (in c.g.s. units) as g = 981, T = 74, 
v, = 0.0114, S = 0.1/2n. The wavenumber is given by k, = A, and we have chosen 
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FIGURE 5. Evolution in time of the averaged surface-elevation spectrum and the averaged 
nonlinear transfer for u+ = 17 cm/s. Note the change of scale in the course of time. Here, N = 50 
and A = O.l/d2. (a) T = 50; ( b )  100;  (c) 150; (d) 200; (e) 250. 

the mesh width A in such a way that the waves enjoying second-harmonic resonance 

(32) 
are included, i.e. A = 0.1 /d2;  

thus, waves with k = k,, (=  d 2 )  and k = k,, ( = ) 1 / 2 )  obey the conditions for second- 
harmonic resonance. The wave with wavenumber k = k,, (=  3.54) is heavily damped 
because of viscous dissipation. Therefore, the full inertial subrange and part of 
the viscous range is included in the simulation. This forced dissipative system with 
N = 50 is most likely to exhibit chaotic behaviour as shown before for the case of a 
three-wave interaction where one wave is growing owing to linear effects and the 
other two are heavily damped (cf. e.g. Russel & Ott 1981). Here, we concentrate on 
the downshift of the peak wavenumber, and shall consider aspects of chaotic 
behaviour, strange attractors etc. in a later study. 

We shall discuss in Borne detail the results of numerical simulations at three 
different friction velocities, namely u* = 17,21 and 24 cm/s. The noise level was 
( ~ ~ ( 0 ) )  = x g/T,  in agreement with the level found in Choi's experiment. 
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FIGURE 6. Evolution in time of the averaged surface elevation spectrum and the averaged nonlinear 
transfer for uI = 21 cm/s. Note the change of scale in the course of time. Here N = 50 and A = 0.1/ 
4 2 .  (a) T = 50; ( b )  100; (c )  150; (d )  200; (e) 250. 

I n  figures 5-7 we show the evolution in time of the surface-elevation spectrum 
Fl (upper graph) and the rate of change of F1 due to nonlinear interactions (S nonlin, 
lower graph) for, respectively, u.,, = 17, 21 and 24 cm/s. The results shown are 
averaged over a time interval (cases u* = 17 and 21 over a period of 50 units (i.e. 
about 1 s in real time) and the case u.,, = 24 over a period of 25). These cases are 
discussed below. 

Case u.,, = 17 ( & w e  5) 
Remarkably, nonlinear interactions are important from the start. This is seen at 

once from the fact that  the linear growth is maximum for a wavenumber k = k,, 
(=  1.06) whereas at T = 50 the peak of the spectrum is a t  k = 1.63. Also, at T = 50 
and 100 much energy is being pumped into the low wavenumbers (these high energy 
levels are also seen in the spectra of Kawai 1979). The timescale 7NL for nonlinear 
interactions may be estimated; it is typically of the order rNL x 150, and is somewhat 
smaller than the timescale rwind for linear growth (Twind X 80). 
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FIGURE 7. Evolution in time of the averaged surface-elevation spectrum and the averaged 
nonlinear transfer for u* = 24 cm/s. Here, N = 50 and A = 0 .1 /42 .  (a) T = 25; ( b )  50; (c )  75; ( d )  
100; (e) 125; (f) 150; (9) 176; (h) 200; ( i )  225. 
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50 100 150 200 250 

time, T 

FIGURE 8. The average wavenumber (k) aa a function of time T. Here, N = 50 and for a = 0.1/ 
4 2  we have the cases ., u* = 17 cm/s; 0,  u* = 21 cm/s;+, u* = 24 cm/s. Finally for a = 0.15/ 
4 2  we show the case u+ = 24 cm/s (A).  

From T = 100, a slow migration of the peak towards lower wavenumbers may be 
observed. At T = 250 (this corresponds to about 5 s real time) the peak of the 
spectrum is a t  the wavenumber of maximum wind input. 

We show the slow migration of the peak wavenumber in figure 8, where the 
averaged wavenumber, defined as 

is plotted as a function of dimensionless time T. No dramatic changes in the position 
of the peak of the spectrum were found in this simulation. 

Case u* = 21 (jigure 6) 

Again, nonlinear interactions are important from the start. A typical nonlinear 
timescale is T~~ x 70, while ‘T,~,,~ x 40. And again, at T = 50 the peak of the 
spectrum (at k = 1.63) is found a t  a slightly higher wavenumber than that of 
maximum growth rate (at k = 1.41). According to our plot of the average 
wavenumber (k) as a function of time T, there is a continuous migration of the peak 
wavenumber. Evidently, from inspection of the lower panels of figure 6, this slow 
migration is caused by the three-wave interactions. 

Case u* = 24 (figure 7) 
The maximum of the growth rate for this case is at k = k,, x 1.63. During the 

initial stage (up to T = 100) a very narrow spectral peak is generated a t  k = k,,. 
According to the lower panel of figure 7 three-wave interactions tend to make the 
spectral peak narrower. In  addition, during the initial stages the growth rate of the 
spectral peak is enhanced by as much as 50 Yo owing to these three-wave interactions. 

Thus, up to  time T = 100 a narrow spectral peak is generated with a peak 
wavenumber slightly above that for second-harmonic resonance (this last wave- 
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number is at  k = k,, = 1.41). At T = 125 a rather sudden migration of the peak, 
caused by three-wave interactions (cf. the lower panels of figure 7), occurs. This 
migration stops at  around T = 175. Evidence for the sudden down shift in the 
spectral peak may also be found in the graph of the average wavenumber as a 
function of time T (cf. figure 8). 

One might wonder whether the results are sensitive to our choice of the 
wavenumber mesh width A. We therefore performed one experiment for u* = 24 cm/s 
with a larger mesh width 

A = 0.15/42, (34) 

keeping the number of modes N fixed (N = 50). The initial noise level was again 
( ~ ~ ( 0 ) )  = 10-4*g/T, hence the initial surface-elevation spectrum was smaller by a 
factor of two compared with our earlier experiments. Only during the initial stage is 
a significant departure from our earlier experiment found. The reason is that in this 
experiment also the high-wavenumber waves (3.5 < k < 5.3) have energy that is very 
efficiently dissipated by the effect of viscosity. The result is that, compared to the 
former simulation, this experiment has a somewhat delayed downshift of the peak. 
This is illustrated in figure 8 where we have plotted the averaged wavenumber as a 
function of time. Also note the large departure of (k) initially because of the 50 % 
larger value of (k(0)). However, a different choice of mesh width and viscous 
subrange has no major effect on the downshift of the peak wavenumber. 

We summarize the results of the numerical simulations as follows. In  all cases 
second-harmonic resonance plays an important role in the evolution of the surface- 
elevation spectrum. This is also found in the initial stage as is illustrated most clearly 
by the case u* = 17 cm/s where the maximum of the wind input is at  wavenumber 
k = kI5 ,  whereas at  time T = 50 the maximum of the spectrum is at k = k23. As a. 
result, a rather broad spectrum is found at later times giving a gradual decrease of 
the average wavenumber. On the other hand, for the larger wind speed u* = 24 cm/s 
the maximum of the wind input and an extremum of the nonlinear transfer 
coincides, resulting in a narrow spectrum at time T = 100 with a peak wavenumber 
just above the second-harmonic wavenumber, i.e. kpeak = k,, = 1.63, whereas the 
second-harmonic wavenumber is at  k = k,, = 1.41. Inserting the peak wavenumber 
into the threshold condition (31) one finds that transfer of energy from the second to 
first harmonic starts to happen for a waveheight h > 0.264 which corresponds to a 
variance ( q 2 )  = ih2 > 0.00874. Now, the waveheight considered in the simple 
theory of $3 only refers to the waves around the second-harmonic peak. Estimating 
the variance of the peak of the spectrum by summing the surface-elevation spectrum 
of figure 7 at time T = 100 over the wavenumber range k,, < k < k,,, we find ( ? j 2 ) p &  

x 0.009. Based on the simple second-harmonic resonance theory of $3 one would 
therefore expect a considerable transfer of energy from the second to the first 
harmonic after time T = 100. This is clearly observed in the panels following T = 100 
of figure 7. 

We would like to remark here that there is qualitative agreement between our 
numerical simulations and the experiments of Choi (1977) and Kawai (1979). 
Quantitative agreement is however hardly to be expected as a number of physical 
effects are not included in our model, for example the effect of the water current 
induced by the wind and the shear in the water current. This not only affects the 
dispersion relation of the waves but also shear in the current will affect the 
interaction matrix V and the resonance condition (Janssen 1986). Shear in the air 
flow might change V as well giving a complex matrix instead of a real one (cf. Craik 
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1985), and therefore the nonlinear interactions are not conservative anymore. 
Incidentally, it should be noted that the effect of quadratic nonlinearity in the air is 
not as large for the surface waves as found for waves in a shear flow without a density 
gradient (see e.g. Craik 1985, p. 164). Although the first and second harmonic also 
have a common critical layer, the air density pa is much smaller than the water 
density pw so that the effect of shear in the air flow on the matrix V will be 

0 Re), 

where Re = u,/kv,, and v, is the kinematic viscosity of air. Hence, as p,/p, x 0.001 
and, for the experimental conditions of interest, Re x 100 the effect of shear in the 
air flow might still be small. 

We have only performed integrations with this model for one-dimensional 
propagation. The spanwise variation of the wave field will be included in future work, 
as two-dimensional effects are believed to be important. For example, Kawai (1979) 
shows photographs of the water surface with strong spanwise variations. 

5. Conclusions 
We have discussed a numerical model of the evolution of wind-generated, 

gravity-capillary waves. This model includes the effects of energy input by wind, 
energy dissipation by viscosity and energy redistribution among the waves by 
nonlinear three-wave interactions. 

A rather sudden migration of the peak of the spectrum is observed provided the 
peak wavenumber is larger than the wavenumber k, for second-harmonic resonance 
and provided the waveheight corresponding to this peak is sufficiently large. There 
is qualitative agreement with results obtained from a simple model of second- 
harmonic resonance (Janssen 1986) and with wave-tank experiments of Choi (1977) 
and Kawai (1979). In particular, it was also shown that in the presence of many 
waves second-harmonic resonance plays an important role in the evolution of 
gravi t y-capillar y waves . 

Remarkably, even in the stage of the initial wavelets (a term introduced by Kawai 
1979) the effect of nonlinear three-wave interactions may be comparable with the 
effect of wind. There is no need to emphasize then that the determination of the 
growth rate of the waves by wind through an analysis of the time series of the surface 
elevation of the waves might be in error by a factor of two. Therefore, according to 
our results, an alternative technique for the determination of energy transfer from 
the wind to the gravity-capillary waves has to be found. Incidentally, an analogy 
may be drawn between the present status of research in gravity-capillary waves and 
the status of understanding of long, surface gravity waves by the end of the sixties 
when the important role of four-wave interactions on the behaviour of these long 
waves was realised. 

Finally, it is noted that our results have been derived from deterministic evolution 
equations. The use of statistical evolution equations would be perhaps more 
desirable, if only because less computation time is needed. (A typical run with the 
deterministic equations took 15 min C.P.U. time on a Cray-XMP-48.) However, a 
reconsideration of the conventional statistical theory for the case of second-harmonic 
resonance is then needed since the relation (6) was certainly not satisfied in our 
simulations. 
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